بررسی ریزساختار بتن ژئوپلیمری در سازه‌ها، با رویکرد مدیریت بحران

نوع مقاله : مقاله پژوهشی

نویسنده

‌‌دکتری تخصصی عمران سازه، گروه مهندسی عمران، واحد چالوس، دانشگاه آزاد اسلامی، مازندران، ایران.

چکیده

مدیریت بحران از شاخصه‌های ایجاد امنیت ملی در کشور است. به‌منظور کاهش آسیب‌پذیری مراکز حیاتی و زیرساخت‌های عمرانی کشور در برابر بروز بحران‌های مختلف، بهبود خواص مکانیکی و دوام بتن مصرفی در سازه-های بتن‌آرمه این‌گونه از مراکز، راه‌کاری موثر و کاربردی خواهد بود. بهبود بخش ریزساختار بتن کمک شایانی به افزایش استحکام بتن در برابر بروز عوامل مختلف تخریب بتن دارد. در این پژوهش آزمایشگاهی، یک طرح مخلوط از بتن معمولی حاوی سیمان پرتلند با عیار500 کیلوگرم بر متر مکعب و یک طرح مخلوط از بتن ژئوپلیمری بر پایه سرباره کوره آهنگدازی ساخته شد. به‌منظور بررسی ریزساختاری بتن، آنالیز تصاویر میکروسکوپ الکترونی روبشی (SEM) در سن عمل‌آوری 90 روزه بر روی نمونه‌های بتنی انجام گرفت، در ادامه به‌منظور بررسی و صحت‌سنجی نتایج SEM، آزمون غیرمخرب نفوذپذیری آب و آزمون مخرب مقاومت فشاری در سن عمل‌آوری 7، 28 و 90 روزه در بتن انجام گردید. نتایج حاصل از آنالیز SEM حاکی از برتری تراکم در بخش ریزساختار بتن ژئوپلیمری به-واسطه تولید حجم بالایی از ژل‌های هیدراته نسبت به بتن معمولی است. نتایج حاصل از آزمون مقاومت فشاری و نفوذپذیری آب، نشان از تکمیل بخش اعظمی از فرایند ژئوبسپارش در سن عمل‌آوری 90 روزه در بتن است، در این راستا بهبود نتایج در سن عمل‌آوری 90 روز نسبت به سن عمل‌آوری 7 روزه در بتن معمولی و بتن ژئوپلیمری در آزمون مقاومت فشاری به‌ترتیب به‌میزان 79/48 و 93/10 درصد کسب گردید، در آزمون نفوذپذیری، این برتری به-ترتیب به‌میزان 44/19 و 81/14 درصد حاصل گردید.

کلیدواژه‌ها


  1. Ahmad, A., Ahmad, W., Aslam, F., & Joyklad, P. (2022). Compressive strength prediction of fly ash-based geopolymer concrete via advanced machine learning techniques. Case Studies in Construction Materials16, e00840.‏
  2. Ahmad, S. Azad, A.K. and Loughlin, K.F. (2005). A study of permeability and tortuosity of concrete. 30th Conference on Our World in Concrete & Structures, Singapore, 23 - 24 August.
  3. Ahmed, H. U., Mohammed, A. S., Faraj, R. H., Qaidi, S. M., & Mohammed, A. A. (2022). Compressive strength of geopolymer concrete modified with nano-silica: Experimental and modeling investigations. Case Studies in Construction Materials16, e01036.‏
  4. Asadi, I., Baghban, M. H., Hashemi, M., Izadyar, N., & Sajadi, B. (2022). Phase change materials incorporated into geopolymer concrete for enhancing energy efficiency and sustainability of buildings: a review. Case Studies in Construction Materials, e01162.‏
  5. Albidah, A., Alqarni, A. S., Abbas, H., Almusallam, T., & Al-Salloum, Y. (2022). Behavior of Metakaolin-Based geopolymer concrete at ambient and elevated temperatures. Construction and Building Materials317, 125910.‏
  6. Amin, M., Elsakhawy, Y., Abu el-hassan, K., & Abdelsalam, B. A. (2022). Behavior evaluation of sustainable high strength geopolymer concrete based on fly ash, metakaolin, and slag. Case Studies in Construction Materials16, e00976.‏
  7. Allahverdi, A. L. I., Kani, E. N., & Yazdanipour, M. (2011). Effects of blast-furnace slag on natural pozzolan-based geopolymer cement. Ceramics-Silikáty55(1), 68-78.‏
  8. Banthia, N. Biparva, A. and Mindess, S. (2005). Permeability of concrete under stress. Cement and Concrete Research, No. 35, pp. 1651 – 1655.
  9. Beskopylny, A. N., Shcherban’, E. M., Stel’makh, S. A., Mailyan, L. R., Meskhi, B., & El’shaeva, D. (2022). The Influence of Composition and Recipe Dosage on the Strength Characteristics of New Geopolymer Concrete with the Use of Stone Flour. Applied Sciences12(2), 613.‏
  10. Bernal, S. A., San Nicolas, R., Myers, R. J., de Gutiérrez, R. M., Puertas, F., van Deventer, J. S., & Provis, J. L. (2014). MgO content of slag controls phase evolution and structural changes induced by accelerated carbonation in alkali-activated binders. Cement and Concrete Research57, 33-43.‏
  11. Building and Housing Research Center, (2014), N. Issue: 428, National durability of concrete code in Persian Gulf and Oman Sea, P.P. 34-35.
  12. Davidovits, J. (2008). Geopolymer chemistry and application 2nd ed. Institut Géopolymère, France.‏
  13. Deb, P., Nath, P., & Sarker, P. (2015). Drying shrinkage of slag blended fly ash geopolymer concrete cured at room temperature. Procedia Engineering, 125, 594-600.
  14. Duan, P., Shui, Z., Chen, W., & Shen, C. (2013). Enhancing microstructure and durability of concrete from ground granulated blast furnace slag and metakaolin as cement replacement materials. Journal of Materials Research and Technology2(1), 52-59.‏
  15. Eftekhari, S. M., etemadi, L., & hoseini, M. (2021). Designing a Social Crisis Management Model in Earthquakes, and Modifying the Structure of Vital Arteries Distribution. 12(4), 7-35.
  16. Ghoreishi, F. S., & naghibi, F. (2023). Multi-criteria evaluation of the role of the pivotal neighborhood in the crisis management cycle (Case study: Bazarbash neighborhood of Urmia). 14(4), 119-150.
  17. Hoseinpour, R. (2021). The Importance and Role of Crisis Logistics in the Supply Chain and Support of Crisis Management (Emphasizing the Armed Forces’ logistics). 13(3), 33-58.
  18. Hongjian, D., Suhuan , D., & Liu, X. (2014). Durability performances of concrete with nano-silica. Construction and building materials, 73, 705-712.
  19. Jindal, B. B., Alomayri, T., Hasan, A., & Kaze, C. R. (2022). Geopolymer concrete with metakaolin for sustainability: a comprehensive review on raw material’s properties, synthesis, performance, and potential application. Environmental Science and Pollution Research, 1-26.‏
  20. Juenger, M. C. G., Winnefeld, F., Provis, J. L., & Ideker, J. H. (2011). Advances in alternative cementitious binders. Cement and concrete research41(12), 1232-1243.‏
  21. Kanagaraj, B., Anand, N., Alengaram, U. J., Raj, R. S., & Kiran, T. (2022). Exemplification of sustainable sodium silicate waste sediments as coarse aggregates in the performance evaluation of geopolymer concrete. Construction and Building Materials330, 127135.‏
  22. Kazemian, S., & Ghareh, S. (2017). Effects of cement, different bentonite, and aggregates on plastic concrete in Besh-Ghardash Dam, Iran. Journal of Testing and Evaluation45(1), 242-248.‏
  23. Li, W., Shumuye, E. D., Shiying, T., Wang, Z., & Zerfu, K. (2022). Eco-friendly fibre reinforced geopolymer concrete: A critical review on the microstructure and long-term durability properties. Case Studies in Construction Materials, e00894.‏
  24. Lin, W., Zhang, C., Fu, J., & Xin, H. (2018). Dynamic mechanical behaviors of calcium silicate hydrate under shock compression loading using molecular dynamics simulation. Journal of Non-Crystalline Solids500, 482-486. ‏
  25. Luukkonen, T., Abdollahnejad, Z., Yliniemi, J., Kinnunen, P., & Illikainen, M. (2018). Comparison of alkali and silica sources in one-part alkali-activated blast furnace slag mortar. Journal of cleaner production187, 171-179.‏
  26. Lyu, X., Robinson, N., Elchalakani, M., Johns, M. L., Dong, M., & Nie, S. (2022). Sea sand seawater geopolymer concrete. Journal of Building Engineering50, 104141.‏
  27. Mansourghanaei1, M. (2023). Experimental Study of Impact Strength in Ordinary Concrete under High Temperature, Along with Validation by SEM and XRD. Passive Defense Quarterly14(1), 1-10.
  28. Mansourghanaei2, M., Biklaryan, M., & Mardookhpour, A. (2022). Investigation of the Impact Resistance, Microstructure and Weight Loss in Fibrous Pozzolanic Concrete Containing Fibers, Under High Temperatures. Passive Defense Quarterly13(3), 11-23.
  29. Mansourghanaei3, M., biklaryan, M., & Mardookhpour, A. (2022). Comparing the Impact Strength of Alkali Activated Concrete and Normal Concrete Under High Heat Based on XRD and SEM Tests. Passive Defense Quarterly13(1), 47-56.
  30. Mansourghanaei4, M., Biklaryan, M., & Mardookhpour, A. (2022). Experimental study of the effects of adding silica nanoparticles on the durability of geopolymer concrete. Australian Journal of Civil Engineering, 1-13.
  31. Mansourghanaei5, M., Biklaryan, M., & Mardookhpour, A. (2022). Experimental study of properties of green concrete based on geopolymer materials under high temperature. Civil Engineering Infrastructures Journal, (), -. doi: 10.22059/ceij.2022.345402.1856
  32. Mansourghanaei6, M. (2022). Experimental evaluation of compressive, tensile strength and impact test in blast furnace slag based geopolymer concrete, under high temperature. Journal of Civil Engineering Researchers, 4(2), 12-21.
  33. Mansourghanaei7, M., & Biklaryan, M. (2022). Experimental study of compressive strength, permeability and impact testing in geopolymer concrete based on Blast furnace slag. Journal of Civil Engineering Researchers4(3), 31-39.‏
  34. Mansourghanaei8, M., Biklaryan, M., & Mardookhpour, A. (2022). Experimental Study of Mechanical Properties of Geopolymer Concrete as Green Concrete with a Sustainable Development Approach in the Construction Industry, Under High Temperature. Journal of Civil Engineering Researchers4(4), 1-11.‏
  35. Mansourghanaei9, M. (2022). Evaluation of mechanical properties of reinforced concrete based on non-destructive test of ultrasonic waves, Under high heat. NDT Technology2(9), 52-62. doi: 10.30494/jndt.2022.333675.1085
  36. Mansourghanaei10 M. Laboratory study of mechanical properties of ordinary concrete under high heat consumption in hydraulic structures, along with validation by SEM and XRD tests. Iranian Dam and Hydroelectric Powerplant 2022; 9 (32) :11-22
  37. Mehta, P. K., & Monteiro, P. J. (2014). Concrete: microstructure, properties, and materials. McGraw-Hill Education.‏
  38. Memiş, S., & Bılal, M. A. M. (2022). Taguchi optimization of geopolymer concrete produced with rice husk ash and ceramic dust. Environmental Science and Pollution Research29(11), 15876-15895.‏
  39. Nofallah, M. H. (2018). Effect of sodium Hydroxide solution concentration and sodium silicate to sodium hydroxide ratio on the compressive strength and water absorption of slag-based alkali-activated concrete. Concrete Research11(2), 95-103.‏
  40. Myers, R. J., Bernal, S. A., San Nicolas, R., & Provis, J. L. (2013). Generalized structural description of calcium–sodium aluminosilicate hydrate gels: the cross-linked substituted tobermorite model. Langmuir29(17), 5294-5306.‏
  41. Pilehvar, S., DuyCao, V., M.Szczotok, A., Carmona, M., Valentini, L., Lanzón, M., LenaKjøniksen, A. (2018). Physical and mechanical properties of fly ash and slag geopolymer concrete containing different types of micro-encapsulated phase change materials. Construction and Building Materials, 173, 28-39.
  42. Ren, W., Xu, J., & Bai, E. (2016). Strength and ultrasonic characteristics of alkali-activated fly ash-slag geopolymer concrete after exposure to elevated temperatures. Journal of Materials in Civil Engineering28(2), 04015124.‏
  43. Richardson, I. G. (2008). The calcium silicate hydrates. Cement and concrete research38(2), 137-158. ‏
  44. Niu, M., Zhang, P., Guo, J., & Wang, J. (2022). Effect of Municipal Solid Waste Incineration Fly Ash on the Mechanical Properties and Microstructure of Geopolymer Concrete. Gels8(6), 341.‏
  45. Ramezanianpor, A., Bahman Zadeh, F., Zolfagharnasab, A., & Ramezanianpour, A. M. (2018). Studying the effect of the amount of source materials and water to binder ratio on chloride ions ingress in alkali-activated slag concretes. Amirkabir Journal of Civil Engineering50(4), 673-684.‏
  46. Sathish Kumar, V., Ganesan, N., Indira, P. V., Murali, G., & Vatin, N. I. (2022). Flexural Behaviour of Hybrid Fibre-Reinforced Ternary Blend Geopolymer Concrete Beams. Sustainability14(10), 5954.‏
  47. Shilar, F. A., Ganachari, S. V., Patil, V. B., Khan, T. Y., & Dawood, S. (2022). Molarity activity effect on mechanical and microstructure properties of geopolymer concrete: A review. Case Studies in Construction Materials, e01014.‏
  48. Srividya, T., PR, K. R., Sivasakthi, M., Sujitha, A., & Jeyalakshmi, R. (2022). A state-of-the-art on development of geopolymer concrete and its field applications. Case Studies in Construction Materials16, e00812.‏
  49. Siddique, R., & Kaur, D. (2012). Properties of concrete containing ground granulated blast furnace slag (GGBFS) at elevated temperatures. Journal of Advanced Research3(1), 45-51.‏
  50. Tayyebi rahani, A., niknam, O., & mohammadnejad, M. (2023). Dimensions of organizational culture in crisis management of industrial units. 14(3), 101-132.
  51. Towhidian, A., Hosnavi, R., & jafarizad, A. (2022). The Crisis Management Model Based on Imam Ali's (AS) Governance Thought (A Case Study: Corona Virus). 14(2), 121-151.
  52. Thakur, M., & Bawa, S. (2022). Self-Compacting geopolymer Concrete: A review. Materials Today: Proceedings.‏
  53. Thomas, B. S., Yang, J., Bahurudeen, A., Chinnu, S. N., Abdalla, J. A., Hawileh, R. A., ... & Hamada, H. M. (2022). Geopolymer concrete incorporating recycled aggregates: A comprehensive review. Cleaner Materials, 100056.‏
  54. Upadhyay, H., Mungule, M., & Iyer, K. K. (2022). Issues and challenges for development of geopolymer concrete. Materials Today: Proceedings.‏
  55. Verma, M., Dev, N., Rahman, I., Nigam, M., Ahmed, M., & Mallick, J. (2022). Geopolymer Concrete: A Material for Sustainable Development in Indian Construction Industries. Crystals12(4), 514.‏
  56. Verma, M., & Dev, N. (2022). Effect of liquid to binder ratio and curing temperature on the engineering properties of the geopolymer concrete. Silicon14(4), 1743-1757.‏
  57. Wong, L. S. (2022). Durability performance of geopolymer concrete: A review. Polymers14(5), 868.‏
  58. Yüksel, İ., Siddique, R., & Özkan, Ö. (2011). Influence of high temperature on the properties of concretes made with industrial by-products as fine aggregate replacement. Construction and building materials25(2), 967-972.‏